3.236 \(\int \cot ^2(c+d x) (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=43 \[ \frac{(a B+A b) \log (\sin (c+d x))}{d}+x (-(a A-b B))-\frac{a A \cot (c+d x)}{d} \]

[Out]

-((a*A - b*B)*x) - (a*A*Cot[c + d*x])/d + ((A*b + a*B)*Log[Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.082227, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {3591, 3531, 3475} \[ \frac{(a B+A b) \log (\sin (c+d x))}{d}+x (-(a A-b B))-\frac{a A \cot (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

-((a*A - b*B)*x) - (a*A*Cot[c + d*x])/d + ((A*b + a*B)*Log[Sin[c + d*x]])/d

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=-\frac{a A \cot (c+d x)}{d}+\int \cot (c+d x) (A b+a B-(a A-b B) \tan (c+d x)) \, dx\\ &=-(a A-b B) x-\frac{a A \cot (c+d x)}{d}+(A b+a B) \int \cot (c+d x) \, dx\\ &=-(a A-b B) x-\frac{a A \cot (c+d x)}{d}+\frac{(A b+a B) \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [C]  time = 0.174416, size = 78, normalized size = 1.81 \[ -\frac{a A \cot (c+d x) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},-\tan ^2(c+d x)\right )}{d}+\frac{a B (\log (\tan (c+d x))+\log (\cos (c+d x)))}{d}+\frac{A b (\log (\tan (c+d x))+\log (\cos (c+d x)))}{d}+b B x \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

b*B*x - (a*A*Cot[c + d*x]*Hypergeometric2F1[-1/2, 1, 1/2, -Tan[c + d*x]^2])/d + (A*b*(Log[Cos[c + d*x]] + Log[
Tan[c + d*x]]))/d + (a*B*(Log[Cos[c + d*x]] + Log[Tan[c + d*x]]))/d

________________________________________________________________________________________

Maple [A]  time = 0.052, size = 65, normalized size = 1.5 \begin{align*} -Axa+Bbx-{\frac{Aa\cot \left ( dx+c \right ) }{d}}+{\frac{Ab\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{Aac}{d}}+{\frac{aB\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}+{\frac{Bbc}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

-A*x*a+B*b*x-a*A*cot(d*x+c)/d+1/d*A*b*ln(sin(d*x+c))-1/d*A*a*c+1/d*a*B*ln(sin(d*x+c))+1/d*B*b*c

________________________________________________________________________________________

Maxima [A]  time = 1.45873, size = 92, normalized size = 2.14 \begin{align*} -\frac{2 \,{\left (A a - B b\right )}{\left (d x + c\right )} +{\left (B a + A b\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 2 \,{\left (B a + A b\right )} \log \left (\tan \left (d x + c\right )\right ) + \frac{2 \, A a}{\tan \left (d x + c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/2*(2*(A*a - B*b)*(d*x + c) + (B*a + A*b)*log(tan(d*x + c)^2 + 1) - 2*(B*a + A*b)*log(tan(d*x + c)) + 2*A*a/
tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.98403, size = 178, normalized size = 4.14 \begin{align*} -\frac{2 \,{\left (A a - B b\right )} d x \tan \left (d x + c\right ) -{\left (B a + A b\right )} \log \left (\frac{\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right ) + 2 \, A a}{2 \, d \tan \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*(2*(A*a - B*b)*d*x*tan(d*x + c) - (B*a + A*b)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c) + 2*A
*a)/(d*tan(d*x + c))

________________________________________________________________________________________

Sympy [A]  time = 1.5604, size = 122, normalized size = 2.84 \begin{align*} \begin{cases} \tilde{\infty } A a x & \text{for}\: \left (c = 0 \vee c = - d x\right ) \wedge \left (c = - d x \vee d = 0\right ) \\x \left (A + B \tan{\left (c \right )}\right ) \left (a + b \tan{\left (c \right )}\right ) \cot ^{2}{\left (c \right )} & \text{for}\: d = 0 \\- A a x - \frac{A a}{d \tan{\left (c + d x \right )}} - \frac{A b \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{A b \log{\left (\tan{\left (c + d x \right )} \right )}}{d} - \frac{B a \log{\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac{B a \log{\left (\tan{\left (c + d x \right )} \right )}}{d} + B b x & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Piecewise((zoo*A*a*x, (Eq(c, 0) | Eq(c, -d*x)) & (Eq(d, 0) | Eq(c, -d*x))), (x*(A + B*tan(c))*(a + b*tan(c))*c
ot(c)**2, Eq(d, 0)), (-A*a*x - A*a/(d*tan(c + d*x)) - A*b*log(tan(c + d*x)**2 + 1)/(2*d) + A*b*log(tan(c + d*x
))/d - B*a*log(tan(c + d*x)**2 + 1)/(2*d) + B*a*log(tan(c + d*x))/d + B*b*x, True))

________________________________________________________________________________________

Giac [B]  time = 1.27816, size = 161, normalized size = 3.74 \begin{align*} \frac{A a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \,{\left (A a - B b\right )}{\left (d x + c\right )} - 2 \,{\left (B a + A b\right )} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right ) + 2 \,{\left (B a + A b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - \frac{2 \, B a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, A b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + A a}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

1/2*(A*a*tan(1/2*d*x + 1/2*c) - 2*(A*a - B*b)*(d*x + c) - 2*(B*a + A*b)*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 2*(B
*a + A*b)*log(abs(tan(1/2*d*x + 1/2*c))) - (2*B*a*tan(1/2*d*x + 1/2*c) + 2*A*b*tan(1/2*d*x + 1/2*c) + A*a)/tan
(1/2*d*x + 1/2*c))/d